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The equilibrium flux method (D. I. Pullin, J. Compuf. Phys. 34, 231 (1980)) is a kinetic 
theory based finite volume method for calculating the flow of a compressible ideal gas. It is 
shown here that, in effect, the method solves the Euler equations with added pseudo-dis- 
sipative terms and that it is a natural upwinding scheme. The method can be easily modified 
so that the flow of a chemically reacting gas mixture can be calculated. Results from the 
method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a 
conventional continuum solution. Results are also presented for the calculation of a plane 
two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt nosed body. 
8 1989 Academic Press, Inc. 

1. INTRODUCTION 

Pullin [l] proposed a direct simulation method, derived from the kinetic theory 
of gases, for the calculation of a flow of a compressible gas. Another kinetic theory 
based method, due to Reitz [a], has been applied to two-dimensional flows by 
Deshpande [3] but Pullin’s equilibrium flux method or EFM has not been taken 
up. Because they are derived from the physical modelling of a flow at a molecular 
level these kinetic theory methods have some characteristics which make them 
promising candidates for the calculation of flows about hypersonic cruise or 
re-entry vehicles, where the flow energy is great enough to initiate chemical 
reactions in air. Both methods automatically ensure, with no complicated logic, 
that physical signals are transmitted in the correct directions and, in particular, in 
the hypersonic limit EFM becomes an upwind scheme (see Appendix). Both 
methods lend themselves naturally to the inclusion of finite rate chemical reactions 
by a simple de-coupling of the fluid dynamics and chemical equilibriating processes. 
A similar de-coupling has been used to calculate elliptic internal reacting flows by 
Greenberg and Presser [4]. They discuss the advantages of such an approach, 
namely that all the stiffness of the governing partial differential equations, which 
arises from the different chemical reaction rates, appears in a system of ordinary 
differential equations which can be solved by Gear’s standard technique [S]. For 
two-dimensional flows Pullin’s EFM has an advantage over Reitz’s method in that 
it is a finite volume scheme which can be applied on unstructured grids. The 
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Cartesian co-ordinate formulation of Reitz’s method seems to make it more difficult 
to apply to arbitrary boundary shapes. 

Because EFM is derived directly from considerations of the physics of the flow, 
rather than the governing equations, it is difftcult to classify the method, but it is 
shown in the Appendix that it may be considered as a finite volume solution 
method for the Euler equations with added terms. These “pseudo-dissipative” terms 
arise naturally from the physical simulation of the flow at a molecular level and, 
unlike an aritificial viscosity term, cannot be adjusted to provide the desired degree 
of smoothness in the solution. It appears, however, that it is this pseudo-dissipation 
which makes EFM particularly robust. The lack of robustness of traditional 
methods for the Euler equations has led the authors of Ref. [6] to use Godunov’s 
method for the calculation of supersonic flows about complex body shapes even 
though some price in terms of accuracy and computer time was incurred. Unlike 
Godunov‘s method, EFM requires no iteration at each time step and thus may be 
preferable. EFM is an explicit time stepping method and is subject to a limitation 
on the time step to ensure stability. With the stability condition satisfied, EFM 
produces no unphysical oscillations near shocks. This is an important feature since 
such oscillations would be expected to produce disastrous effects on chemically 
reacting flows where the reaction rates are extremely sensitive to changes in 
temperature. 

The equilibrium ffux method was derived from Bird’s direct simulation Monte 
Carlo (DSMC) method [7]. The latter method follows, at a molecular level the 
evolution of the distribution f(v, x, t) of molecular velocities v by a direct computer 
simulation of molecular motions and collisions in a network of cells representing 
the flowlield. It yields [S] a statistical solution of the Boltzmann equation, 

where n is the number density, which describes the evolution of f: The Euler 
equations may be derived from the Boltzmann equation by considering the infinite 
collision rate limit in which the local molecular velocity distribution everywhere 
conforms to the local equilibrium or Maxwellian distribution 

f(v) = (fl/~“~)~ exp[ -p2c2], (2) 

where c = v - u is the molecular thermal velocity, u = v is the mean molecular 
velocity (or local flow velocity), /I - ’ = (2RT) “* is the most probable molecular 
thermal speed, R is the gas constant, and T is the local temperature. The 
equilibrium flux method is the infinite collision rate or equilibrium limit of DSMC. 

In the following sections DSMC is briefly described as an introduction to EFM. 
Then EFM is described in detail, first for an inert gas mixture and then for a chemi- 
cally reacting gas. Results of calculations for a one-dimensional flow problem, the 
propagation of a plane normal shock in a reacting gas, are then presented. For 
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simplicity, calculations were made for only one chemical reaction, although any 
number of reactions may in theory be included. The single reaction was the 
dissociation reaction 

where A2 denotes a diatomic molecule made up of two atoms of element A. As a 
further simplification, the chemical dynamics are represented by Lighthill’s [9] 
ideal dissociating gas and its associated reaction rate equation proposed by 
Freeman [lo]. These EFM calculations are compared with an exact solution 
obtained by integrating the governing equations behind a shock wave. Finally the 
results of some two-dimensional calculations of a high speed flow of a dissociating 
gas about a blunt-nosed body are shown and compared with the results of 
independent calculations of a similar flow. 

2. THE DIRECT SIMULATION METHOD 

In DSMC the behaviour of a rarefied gas is studied by calculating the motions 
of some thousands of “simulator molecules” which represent the molecules of the 
gas. To make this feasible the molecular collisions and the free flight between colli- 
sions are treated separately, and alternatively, for a series of short time steps. 

The flowfield is divided into small cells of characteristic length smaller than the 
local molecular mean free path and the simulator molecules are moved in colli- 
sionless trajectories for a short time At carrying from cell to cell their mass, momen- 
tum, and energy. After the molecules have moved, it is assumed that each cell is 
isolated from other cells while the molecular velocities are changed by calculating 
representative collisions amongst the molecules in each cell. The number of 
collisions in the interval At must be such that the local collision rate is correct. In 
the next step the molecules move according to the velocities established by the 
collisions. Since the molecular velocities are known throughout the flow at each 
step, the local flow properties, which are assumed to be constant over each cell, can 
be obtained from the sample of molecules in that cell. 

3. THE EQUILIBRIUM FLUX METHOD 

In DSMC the effect of the collisions is to drive the distribution of molecular 
velocities towards the equilibrium distribution given by (2). In the limit of an 
infinite collision rate the distribution of molecular velocities everywhere would tend 
asymptotically towards the equilibrium distribution determined by the total mass, 
momentum, and energy within a cell. If the velocity distribution were known to be 
given by (2) the fluxes of mass, momentum, and energy which would be carried 
from cell to cell by the simulator molecules could be calculated. It turns out 
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therefore that in this infinite collision rate or equilibrium limit of the direct 
simulation method there is no need for simulator molecules. 

In the equilibrium flux method [l] the total mass, momentum, and energy in 
each cell are stored and these, with the cell volumes, determine the local density, 
mean velocity, and temperature, all of which are assumed to be constant within 
each cell. Given that the molecular velocity distribution is Maxwellian, the fluxes of 
mass, momentum, and energy across a cell boundary in a short time At can be 
calculated from straightforward kinetic theory assuming free molecular flight. These 
amounts are deducted from the cell and added to the mass, momentum, and energy 
in the cell sharing this boundary. The return flux across the boundary is calculated 
from the conditions in the adjacent cell or, at solid boundaries, the flow is reflected. 
At fluid boundaries the fluxes pass out of the flowtield and incoming fluxes’are 
calculated according to the boundary conditions. After the fluxes have been 
calculated, the new amounts of mass, momentum, and energy in each cell determine 
the new local density, mean velocity, and temperature and these in turn determine 
the fluxes in the next time step. If At is less than the time it takes the flow to 
traverse a cell, that is if V,. At/Ax < 1, where I’, is a representative local fluid or 
signal speed and Ax is the cell size, it can be assumed that the fluxes flow between 
adjacent cells only. If At is not small it is found that the calculation is unstable. In 
other words the CFL number must be less than one. The calculation can begin with 
freestream conditions in each cell, and then proceeds as the unsteady solution of an 
impulsively started flow until steady conditions are reached. 

3.1. The Equilibrium Flux Quantities 

Figure 1 shows a cell in which the stream (mean) velocity is inclined at an angle 
8 to one of the cell boundaries. The fluxal quantities (/unit time/unit area) in one 
direction across this boundary are required for an equilibrium gas. They are [7]: 

forward flux 

FIG. 1. A typical cell exchanges fluxes of mass, momentum, and energy with a neighbouring cell 
across the common boundary. 
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for mass 

(dB)Cexp( -4) + ~‘/*.~H(s,)ll(2~‘/~) @a) 

for normal momentum 

(3b) 

for tangential momentum 

(dB2) s,Cev(-s3 + ~“2~,~(.5Jll(2~“2) 

for translational energy 

(3c) 

WB3)C(s2 + 2) exp( -53 + 7c1’*s3,H(s,)(s2 + 5/2 )]/(47P) (3d) 

for energy in molecular structure 

(P/B) e,,Cexp(-si) + ~“2s,H(s,)l/(2n”2), (3e) 

where s = Bu is the speed ratio, s, = s cos 0, sp = s sin 8, H(s,) = 1 + erf(s,), and e,, 
is the energy stored in the structure of the molecule. If r is the number of active 
degrees of freedom of the molecular structure then 

e,, = tRTf2. (4) 

The internal energy of the gas, which includes the random or thermal part of the 
translation energy, is eint = $(3 + 5) RT and the ratio of specific heats is 
y = (5 + 5)/(3 + t). For a gas mixture the calculations must be based on an 
“average” molecule. In this case, or if some energy modes are not fully excited, 5 
may not be an integer. 

The density p, stream velocity u, and temperature T in a cell of volume V may 
be determined from the mass A4, momentum (P,, P,), and energy E in that cell as 
follows : 

M=pV (54 

p, = MUX (5b) 

P.,. = Mu, (5c) 

E= M[fu2+ein,]. (5d) 

3.2. Relationship to the Euler Equations 

Provided that the cell size were smaller than the local mean free path, DSMC 
would produce a solution of the Euler equations in the limit of an infinite collision 
rate and zero mean free path. Long before such a limit was reached, however, 
DSMC would become prohibitively expensive in computation time. EFM is a prac- 
tical alternative but, because of the finite cell size, it provides an approximation 
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only to this hypothetical limit of DSMC. In EFM the collision part of DSMC has 
been taken to the limit of an infinite collision rate (that is, the conditions in each 
cell are assumed to be those corresponding to local kinetic equilibrium), but the 
corresponding limit of zero mean free path in the convection calculation cannot be 
achieved. A fluid element must travel a distance approximately equal to the cell size 
before it can adjust to any flow gradients. Hence there is an effective mean free path 
in these calculations approximately equal to the cell size. This conclusion can be 
verified by considering Fig. 2 which shows two adjacent cells in a flow in which 
there is a gradient du/dy of the flow velocity parallel to the x-axis and the density 
and temperature in each cell are the same. If the velocities in the cells are u, and 
ub then there is a net flux (/unit area/unit time) of x-momentum across the bound- 
ary. The shear stress on the boundary is equal to this net flux and is, from (3c), 

7 = p( RT/27r)“2(~,, - q,). 

Comparing this to the stress-strain relationship for Couette flow, 

t = p duldy, 

and approximating du/dy by (ub - u,)/dy, where dy is the distance between the cell 
centroids, we obtain a pseudo-viscosity for EFM as 

p = ( RT/2n)‘12p Ay. 

Comparing this result to the usual relation between mean free path, A, and 
viscosity; that is, P = ip?A, where C = (8RT/n)“* is the mean molecular thermal 
speed, we obtain a pseudo mean free path 

2 = Ay/2. 

i 

f 
cell b 

FIG. 2. Adjacent cells in the presence of a velocity gradient exchange momentum, giving rise to a 
pseudo-viscosity. 

581/80/l-14 
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A similar analysis for the transport of thermal energy when there is a temperature 
difference between the cells yields an expression for the coefficient of thermal 
conductivity. Thus 

K= (y + 1) c,(RT/8z)“‘p Ay. 

Other pseudo-dissipative effects are present. A density gradient will induce a flow 
of mass between the cells as will a temperature gradient. These pseudo-dissipative 
effects are examined in more detail for a one-dimensional flow in the Appendix. 

4. CHEMICAL REACTIONS 

If IX represents a typical species concentration in a reacting gas mixture the 
change in concentration is given by Da/Dt = da/at + u .Va, where Da/Dt is the 
Lagrangian chemical reaction rate which will depend on the local density, 
temperature, and chemical composition. Chemical reactions are incorporated into 
EFM as follows: 

(1) The continuous variation with position of chemical composition is 
represented by a uniform composition within a cell with discontinuities of composi- 
tion between cells. In addition to the totals of momentum and energy in each cell, 
the total mass of each chemical species in each cell must be stored. 

(2) The chemical reactions are frozen as the cells exchange mass, momentum, 
and energy. The fluxes are calculated using the appropriate R and < for the gas 
mixture in each cell. The total mass flux across a boundary is divided into separate 
fluxes of each chemical species. 

(3) After the cells exchange mass, momentum, and energy, the chemical 
composition is changed by calculating an adiabatic reaction for each cell, in which 
chemical potential energy is converted to thermal energy or vice versa. The reaction 
in each cell is independent of neighbouring cells, and proceeds for the time At, for 
which the fluxes were calculated, at a rate depending on the conditions in that cell. 
The new composition gives new values of R and 4: which are used when calculating 
the next set of fluxes. 

In effect, the chemical reactions are de-coupled from the convection calculations in 
the same way as the collisions and convection are de-coupled in DSMC. 

The calculations may begin with freestream conditions in each cell and should 
continue until the chemical composition in a cell no longer changes over a complete 
time step. 

4.1. The Dissociation Reaction 

The equation of state for a mixture of molecules A, and dissociated atoms A is 
p = p( 1 + a) R,, T, where a = [A]/( [A] + 2[A,]) is the degree of dissociation, and 
R,, is the gas constant for the diatomic species. That is, the gas constant for the 
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mixture is R = (1 + a) RAA. The chemical potential energy (the dissociation energy) 
is aO,R,,, where BD is the dissociation temperature, a constant for the particular 
gas. The diatomic component of the ideal dissociated gas has two rotational degrees 
of freedom and its two vibrational degrees of freedom are always half excited (see 
[ 11, p. 1591). The atomic species has energy of translation only and electronic 
excitation is ignored. For the mixture then, the energy stored in the molecular 
structure is e,, = tRTj2, where 

5=3(1-a)/(l+a) (6) 

is the effective number of active degrees of freedom. The specific internal energy, 
eint, is equal to (e,, + e,, f aB,R,,) or, (see [ 11, p. 160]), 

eint= R,,(3T+ a0,). (7) 

Although the dissociation energy could be calculated from the dissociation at any 
time, it is convenient to calculate the transport of dissociation energy from cell to 
cell. To do this it is necessary to replace e,, in Eq. (3e) by e,, + a0, R,, . The total 
energy in a cell will then include the dissociation energy. 

After the fluxes have been calculated, the next step is to determine the change in 
composition brought about by allowing the dissociation reaction to run for a time 
At. For this adiabatic reaction both a and T vary, subject to the condition that eint 
is constant. The constant internal energy in each cell can be found from Eq. (5d). 

The rate equation proposed by Freeman [lo] for the ideal dissociating gas is 

Da/Dt =pC7”‘[(1 -a)exp( -8,/T)-p/p,a*]. (8) 

The characteristic density, p,, , is constant for a particular gas, and C and q are 
constants which can be found by matching the reaction rate (8) to the usual 
reaction rates k, = 2aC, Tql exp( -8,/T) and k, = (1 - a) C, Tq2 exp( -0,/T) for 
the reactions 

and 

The result (see [ll, p. 2331) is 

WCTv + 2aC, TV1 + (1 -a) Cz TV=, 

where W is the molecular weight of the diatomic species. The constants C and q 
should be selected to make the correspondence as close as possible for the range of 
temperatures and degree of dissociation being considered. 
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Equations (7) and (8) can be combined to give the differential equation describ- 
ing the reaction as either da/& = F(a) or dT/at = G(T), one of which must be solved 
for each cell at each time step to yield a and T after a time At. A Runge-Kutta 
technique, described in Ref. [12, p. 1291, was used to solve these equations. The 
errors in a and T are related by 

= ein,/at?, R,, - 1. 

The fractional error for a is greater than for T when 2a < a,,,, where 
a max = eint/OD R,, . In this case the equation da/at = F(a) is solved. Otherwise the 
equation aT/& = G(T) is solved. 

5. DISSOCIATION BEHIND A PLANE SHOCK 

As a test of EFM, a plane one-dimensional shock can be produced by simulating 
the action of a shock tube. At time t = 0 a flowlield, consisting of a number of cells 
of equal length, is filled with a gas which is at rest. This gas is bounded by a 
specularly reflecting surface at one end and at the other end by an interface with 
a “driver” gas which has a speed UP. For t > 0, the boundary with the driver gas 
moves into the rest gas with the speed UP and produces a shock which travels 
through the test gas. The density, chemical composition, and temperature of the 
driver gas must be the same as the values of these quantities in the test gas when 
chemical equilibrium is reached behind the shock. In other words, once chemical 
equilibrium is achieved behind the shock, the moving interface separates the two 
gases which are both at rest with respect to the boundary and have the same 
density, chemical composition, and temperature. In this case the boundary 
condition is the same as that produced by a specularly reflecting surface or “piston” 
moving at speed UP into the test gas. However, until chemical equilibrium is 
reached behind the shock, the total amount of mass within the flowfield can change. 
If it could not change then some disturbance of the density profile, like that noted 
in Ref. [ 11, would be expected. Such a disturbance would have an unpredictable 
effect on the chemical reaction and is best avoided. 

Because the length of the flowfield decreases as the computation progresses and 
the number of cells within the flowfield is constant, the boundaries between cells 
move at different speeds. The fluxes from cell to cell across these moving boundaries 
can be found from Eqs. (3), using the velocity of the fluid relative to the boundary 
to calculate the speed ratio. This yields the amounts of momentum Ap’, and energy 
AE’ (both referred to the axes moving with the boundary), and the amount of mass 
Am which are transferred between cells. Before being added to or subtracted from 
the quantities of momentum and energy in the cells, both Ap’ and AE’ must be 
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converted to quantities relative to the global co-ordinate system. The necessary 
transformations are 

Ap = Ap’ + AmU, Pa) 

AE = AE’ + fAmUi + Ap’U,, (9b) 

where Ub is the boundary speed and Ap and AE are the transported momentum 
and energy referred to the global axes. 

Calculations were made for a Mach 15 shock propagating through oxygen, for 
which pD= 15Og/cc [9] and BD = 59380 K [ 131, at a temperature of approximately 
237 K and a density of 1.5 x lop5 g/cc, conditions which correspond roughly to 
those in the earth’s atmosphere at an altitude of 32 km. For these calculations the 
reaction rate constants for the ideal dissociating gas were taken as C = 1 x 10z6 (in 
c.g.s. units) and q = -3.0, which give a reasonable representation of the variation 
of the reaction rate for oxygen (Ref. [ 131) for the conditions ranging from those 
immediately behind the shock to those far downstream. 

Table I shows the preshock conditions (denoted by the subscript l), the condi- 
tions which would be expected behind the shock if the dissociation reaction were 
frozen (denoted by the subscript f), and the equilibrium conditions far behind the 
shock (denoted by the subscript 2). These last were found by an iterative solution 
of the conservation equations, the equation of state, and the condition 

for chemical equilibrium for the ideal dissociated gas. The boundary or piston 
velocity required to produce the shock is 

up=ld-u2. (11) 

Figure 3 shows the density profile, which is moving from right to left, at 
successive times after the calculation begins. The x-axis shows the distance along 
the shock tube as a fraction of its original length, L, which in this case was 1.5 cm. 

TABLE I 

Pre-shock 
Behind chemically 

frozen shock 
Chemical equilibrium 

behind shock 

p1 = lo-‘p, p,/p, = 6.8182 p2/p, = 12.8324 
~u:lR,,0,=0.6 u//u, = 0.1467 UJU, = 0.0779 
R,,T,/u:= l/300 R,,T/lu:= 0.1256 R,,T2/u:=0.0542 

M, = 15.0 M, = 0.1904 M,=0.2415 
a, =o.o uf= 0.0 uz= 33.07% 

po= lSOg/cc, 8,=59,380 K, c = 1026, tj = -3.0 
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FIG. 3. The density profiles of a dissociating gas in an ideal shock tube at two different times. 
The shock is driven by the interface which moves from right to left. There are 500 cells in the flowfield. 
The initial length of the shock-tube was 1.5 cm. 

The flowfield was divided into 500 cells. In this calculation, and all the following 1D 
calculations, the time interval At at any step was set equal to iAx/u,, where Ax was 
the current size of a cell. 

The density expected behind the Mach 15 shock if the dissociation reaction were 
frozen is marked in the figure and it can be seen that the density rises sharply to 
this value. As dissociation proceeds, thermal energy is removed from the flow and 
the density increases further until, far behind the shock, the dissociation has 
virtually reached equilibrium. Then the density profile undulates slightly near its 
equilibrium value. 

It can be seen in the Appendix that, because of the pseudo-dissipative effects, the 
continuum fluxes of mass, energy, and momentum, evaluated for conditions at the 
cell centroids, are different from the calculated fluxes across cell boundaries 
wherever there are flow gradients. In the frame of reference in which the shock is 
stationary, it is the fluxes across the cell boundaries which, in the steady state, are 
the same throughout the flow and equal to the continuum fluxes evaluated 
upstream of the shock. It follows that the conditions in each cell cannot satisfy the 
conservation equations where there are flow gradients. In these calculations the 
deviation was as much as 20% within the shock and as little as 1% or 2% 
downstream of the shock. 

In theory, equilibrium is reached only infinitely far behind the shock, so the 
undulation in the density profile may be a downstream boundary effect of the finite 
length of the flowfield in these calculations. To determine if this has any serious 
effect closer to the shock, the results for the EFM calculations can be compared 
with the results obtained with the following analytical solution for the flow of the 
ideal dissociating gas behind the shock. 
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5.1. Analytical Solution 

For this flow, in the steady state, the Lagrangian derivative Da/Dt reduces to 
u da/dx. Therefore, from (8), the dissociation behind the shock, as a function of 
distance, is a solution of the differential equation 

where 

dajdx = Q(a), (144 

and for a given value of a the state variables p, U, and T may be found as follows: 
The conservation equations which p, U, and T must satisfy are 

Y,=p4 

Iy2=pu2+p(l +a)R,,T 

Y, = $u’ + R,,[aB, + (4 + a) T], 

(15) 

(16) 

(17) 

where !Pr, Y,, and Y’, are constants evaluated from the known conditions 
upstream of the shock. The second term in (17) is the specific enthalpy for the ideal 
dissociating gas. Equations (15) and (16) can be combined to yield 

Y”,=Y1{24*+(1+a)RAAT}/24. (18) 

Since (17) can be rearranged to yield the velocity as a function of T, (18) can be 
written as 

g(T)=% (19a) 

where 

g(T)=!?,-!P,(u2+(1+a)R,,T}/u (19b) 

and 

u = [2( Y, - Raa(aeD + (4 + a) T)}] li2. (19c) 

Equation (19) can be solved iteratively using Newton’s method to yield the tem- 
perature corresponding to the degree of dissociation behind the shock. Once T is 
known the remaining state variables can be found from the conservation equations, 
and the function Q(a) can be evaluated. Equation (14) can thus be integrated to 
yield 

x= :{Q(a)}-‘da 
s (20) 
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TABLE II 

Initial length Final length 
of flowtield of flowfield 

cm x 
Number 
of cells 

CPU (s) 
IBM3083E 

a 
Eq. (21a), based on 

final cell length 
Ax 

30 27.0 400 260 0.305 
20 17.7 500 330 0.160 
10 8.86 500 250 0.8x10.-’ 
6.5 5.76 500 250 0.52 x 10-l 
3.0 2.70 400 220 0.305 x 10-l 
1.5 1.31 500 330 0.118 x 10-l 
2.0 1.74 1000 1320 0.788 x 10 - * 
0.6 0.552 500 430 0.5 x lo-2 
0.5 0.640 700 930 0.29 x 10m2 
0.6 0.552 1000 1590 0.25 x IO-* 
0.6 0.552 2000 6030 0.125 x 1O.-2 
0.6 0.511 3000 15060 0.77 x lo-) 

which relates the degree of dissociation to the distance downstream of the shock. 
The integration of (20) was performed numerically using a quadrature routine 
described in Ref. [12, p. 971. 

5.2. Analytical and EFM Results Compared 

A number of calculations using different numbers of cells and different initial 
lengths of the flowlield were made and are summarised in Table II. The results from 
one such calculation are shown in Fig. 4, where the solid curve shows the solution 

R = .29 x 10 
-2 

I I I I I I I I 
0 0.02 0.04 0.06 O-08 

; 

FIG. 4. The profile of the dissociation fraction behind a plane shock in an ideal shock tube. The solid 
line is the solution of Eq. (20). The crosses show the EFM results in every second cell. The flowfield 
extends beyond the range shown and consists of 700 cells. 
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-2 
6- B = .29 x 10 

0 0.02 0.04 0 .06 0.08 

x 

FIG. 5. Density profile. See Fig. 4 for key. 

of (20) for the dissociation profile behind the shock. The dimensionless length scale 
is zi=xpC/R$,uI- . i 2q The results for the EFM calculation are shown as crosses 
and, for the sake of clarity, the results from every second cell only are plotted. In 
EFM the shock is smeared over a few cells and the dissociation reaction begins 
within the shock. The initial disturbance is propagated at a speed slightly greater 
than the theoretical shock speed until it is far from the driving interface. Therefore 
the exact position of the shock, which is the origin for the length scale, is not 
uniquely defined but has been set at the point whe& the density is equal to the 
expected value of density behind the shock if the reaction were frozen. Except for 
very near the shock, the EFM calculation gives good results. Figures 5 and 6 show 
the density and velocity profiles for EFM compared with the profiles derived from 

0 0.02 0.04 0.06 0.08 
; 

FIG. 6. Velocity profile. See Fig. 4 for key. 
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the solution of (20). Again the correspondence is good. As already mentioned, the 
density and velocity profiles for the EFM calculations are not simply connected 
through the continuity equation. These results suggest that this error is small. 

In order to resolve the chemical relaxation, the cell size Ax in these calculations 
should be small with respect to the characteristic reaction length in the flow. Thus 
the dimensionless parameter 

Q = WWfW/u,) @la) 

should be as small as possible. Here (dcr/dt!, is the rate of Eq. (8) evaluated for the 
conditions immediately behind the shock, that is, for the conditions in the second 
column of Table I. In Fig. 7 three profiles of the dimensionless temperature 
T= R,, T/u: behind the shock are shown, as calculated with three different cell 
sizes, each compared with the analytical solution. The flowfields in these calcula- 
tions extend far beyond the range shown in the figure (see Table II), but it is only 
near the shock that the EFM results differ appreciably from the exact solution. The 
dissociation fraction at the nominal shock position is not zero (see Fig. 4) and 
therefore the calculated temperature at the shock is less than that shown in the 
analytical solution, Figure 8 shows how the ratio of the temperature calculated by 
EFM at the shock to the exact value at the shock approaches unity as the cell size 
decreases, and also how the temperature calculated just downstream of the shock 
compares with the exact value at that location. This figure and Fig. 7 show that the 
error in the calculated temperature is small except very near the shock for a wide 
range of cell sizes. 

These 1D calculations have shown that EFM produces results which approach 
the exact solution as the cell size is reduced. However, this one-dimensional 
problem was particularly expensive computationally for EFM (see Table II), since 
the relaxation region behind the shock which must be resolved extends, in theory, 
to infinity. Because a uniform cell size was used throughout the flowfield, a large 
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FIG. 7. The effect of cell size in EFM. The crosses show the temperature profile behind the shock 
for three different cell sizes in the EFM calculations. The solid line is derived from the solution of 
Eq. (20). 
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FIG. 8. Approach to the exact solution behind the shock as the cell size dx decreases, for two dif- 
ferent distances from the shock. The temperature calculated by EFM is T. The exact solution is T,,. 

number of cells was required to obtain an adequate resolution near the shock. It is 
very likely that the computer times for these calculations could have been reduced 
with little effect on the accuracy by using much larger cells in the flow a long way 
from the shock. In any event the following calculations of the flow of an ideal 
dissociating ‘gas about a plane two-dimensional blunt body represent a more useful 
application of the method. Since the downstream boundary condition is supersonic 
in this case the flowlield can be truncated with negligible danger of affecting the 
flow upstream. 

6. PLANE 2D CALCULATIONS 

The plane two-dimensional flow of a dissociating gas around a short blunt body 
with a semi-cylindrical nose was chosen as a test case for EFM, since results for this 
type of flow using a different calculation method are available for comparison. 
These are the results of Hornung [14], who used an inverse method [lS] which 
starts with an assumed shock shape and derives a body shape which, in those 
calculations, could deviate from being perfectly cylindrical by about 5%. Although 
he used a more complete model of the chemical dynamics than the ideal 
dissociating gas used here, his results help to assess qualitatively the behaviour of 
the present method. 

A “general purpose” computer program, able to handle an arbitrary two-dimen- 
sional flowfield has been developed. The program constructs the cell network in the 
way described by Bird [7] for DSMC. The Ilowfield for this case, divided into cells, 
is shown in Fig. 9. Two boundaries of the flow, corresponding to the surface of the 
body and the line of symmetry, were taken as specularly reflecting. The freestream 
conditions along the upstream boundary were set equal to the pre-shock conditions 
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FIG. 9. The flowfield for the blunt body, divided into cells. 

shown in Table I. The downstream boundary conditions were determined by 
assuming there were no gradients of any flow properties across the boundary. Since 
the flow is supersonic near the downstream boundary, any errors in that boundary 
condition will have negligible effect upstream. 

The ideal dissociating gas with the reaction rate parameters for oxygen given 
above was used in these calculations. The calculations were performed for values of 
the nose radius, r, of 0.005 cm and 0.25 cm. Therefore the dimensionless reaction 
rate parameter based on the nose radius, that is 

Q = W4,(rh 1 @lb) 

was 0.218 or 10.9. If Y were very small so that Sz tended to zero there would be 
negligible chemical reaction effects on the flow about the body. Conversely, if Q 
were very large, the flow would be everywhere in local chemical equilibrium. This 
parameter, based on the smallest cell size along the stagnation line, Eq. (21a), was 
0.0056 or 0.289. The calculations started from freestream conditions in every cell 
and proceeded for longer than the time required to achieve virtually steady 
conditions throughout the flowfield. 

Figure 10 shows the streamlines derived from the computational results for the 
two cases. The sonic line is also shown and the point were it intersects the stagna- 
tion streamline was used to determine the approximate shock stand-off distances for 
the two cases as A/r = 0.27 and 0.19. Figure 11 shows these results compared with 
those obtained by Hornung [ 141. The latter results were well correlated for dif- 
ferent freestream conditions by the reaction rate parameter 52, when the stand-off 
distance was reduced in the form f(A/r)(p/lp,). It can be seen that the present 
results agree reasonably well with those results, given the differences betwen the 
mathematical models and that the shock position is uncertain in EFM. Figure 12 
shows the density contours derived from the EFM calculations and these are 
similar, except for the finite width of the shock, to those shown in Ref. [14] for 
similar values of Sz. 
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FIG. 10. The streamlines about a blunt body and the sonic line derived from EFM calculations for 
two different values of the reaction rate parameter. Freestream conditions are in Table I. 
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FIG. 11. The shock stand-off distance versus rate parameter. The crosses show the results from 
Ref. [ 141. The triangles show the EFM results for M = 15; the circle, for M = 5.66. 

FIG. 12. Equally spaced contours of density for p/p, = 1.5, 2.5,..., for two values of the reaction rate 
parameter. Freestream conditions are in Table I. 
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FIG. 13. Equally spaced contours of dissociation for a = 0.02, 0.04, . . . . for two values of the reaction 
rate parameter. Freestream conditions are in Table I. 

In Ref. Cl43 it was suggested that the distinctive feature of this flow was that ihe 
dissociation reaction was in effect frozen behind the shock for most of the flow out- 
side the stagnation region. This was also found with EFM. Figure 13 shows the 
contours of dissociation obtained with EFM and it can be seen that these contours 
roughly follow the streamlines in Fig. 10 for a large part of the flow behind the 
shock. 

Further calculations of the flow about a blunt nose were made to determine the 
sensitivity of EFM to changes in the time step and the cell size. Two additional 
computational grids were used, both similar to that used before and shown in 
Fig. 9. Each grid had 43 divisions along the body surface and either 20 or 40 layers 
of evenly spaced cells in the radial direction. The freestream conditions, shown in 
Table III, are typical of those in the test section of a shock tube wind tunnel [ 161 
which can produce strong dissociation of nitrogen on a model with a nose radius 
of r = 0.5 cm. For nitrogen pD = 130 g/cc, 0, = 113000 K, C = 1 x 1026, and 
q = -2.89. The reaction rate parameters were chosen to represent the reaction rate 
for nitrogen given in Ref. [13]. The reaction rate parameter (21b) for these 
conditions is Q = 10.6. The parameter Q based on the smallest cell size along the 
stagnation line was 0.40 for the coarse grid and 0.20 for the line grid. 

TABLE III 

Freestream Conditions 

p,/p,=3.06xlO~' 
;u;jR,,6,=0.548 
R,, T,/u:=O.O19 

M, = 5.66 
a, =0.164 

r = 0.5 cm 

pD= 130&c O,= 113,000 K 
c= 10Z6 'I= -2.89 
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Figure 14 shows iso-Mach lines for the flow calculated on each grid, at a time of 
Z= 3.0 after the impulsive start of the flow. The dimensionless time i is equal to 
t/rP1, where the reference speed /?;I is evaluated for the freestream conditions. The 
shock is thinner for the finer grid but the general nature of the flow is the same. The 
shock stand-off distance, again determined from the sonic line, was A/r = 0.26 for 
the coarse grid and A/r = 0.25 for the finer grid. The latter value is plotted in Fig. 11 
and agrees well with the results for the Mach 15 flow and reasonably well with the 
results of Ref. [14]. 

A quantitative assessment of the sensitivity of EFM to the change in cell size can 
be made by comparing the pressures acting on the body in the two cases. These 
pressures can be compared in the form of integrated force co-efbcients C, and C), 
given by 

C,=c PJ, sin V(bIdr) 

C,= -c psA,cosB/(&,u~r). 

In these equations, A, is the length of a surface element, 0 is the angle the surface 
makes with the x-direction, ps is the pressure acting on the element and $plu: is the 
dynamic pressure in the freestream. The summation extends over all surface cells. 
The surface pressure was calculated in a manner consistent with the assumptions of 
EFM. Since in EFM the molecular fluxes are specularly reflected at the surface, the 
surface pressure is twice the normal momentum flux into the surface given by 
Eq. (3b) and depends only on the conditions in the cell adjacent to the surface. It 
may be greater or less than the adjacent fluid pressure if the component of fluid 
velocity normal to the surface is greater than or less than zero. 

Figure 15 shows the time history of the two force co-eficients as calculated on 
the two grids. Although the figure shows that the body forces are not entirely 
independent of the grid, the differences are less than 0.2% and 0.75% for C, and 

FIG. 14. Equally spaced iso-Mach lines as calculated on two grids. Freestream 
Table III. 

conditions are in 
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FIG. 15. Time history of the surface force co-efticients as calculated on the two grids. Freestream 
conditions are in Table III. 

C,, respectively. This figure shows also the rather slow approach to a steady state 
which is a characteristic of unsteady time-stepping calculations. 

These calculations were performed with a constant time step such that the maxi- 
mum CFL number in the smallest cell was 0.89. The calculations on the coarser 
grid were repeated with the time step reduced to one-tenth of the previous value. 
The time histories of the force co-eficients for the two different time steps are com- 
pared in Fig. 16. The results are the same to within 0.08% and 0.12% for C, and 
C,,, respectively. Iso-Mach lines for the results obtained with the smaller step size 
were found to be indistinguishable from those in Fig. 14 which were obtained with 
the larger time step. A shorter calculation, on the finer grid using a time step 10 
times smaller, produced iso-Mach lines (not shown here) identical with those 
obtained at the same elapsed time with the larger time step. 

- CFL = 0.89 
+ ml. = 0.089 

time E 

FIG. 16. Time history of the surface force co-etkients on the 43 x 20 grid for different time steps. 
Freestream conditions are in Table III. 
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FIG. 17. Near-stagnation line density for two different cell sizes. Freestream conditions are in 
Table III. 

Figure 17 shows the density in the cells adjacent to the stagnation line for the two 
different grids. As expected the shock is steeper on the smaller grid but its pos$tion 
is virtually unchanged. There is a noticeable difference in density behind the shock 
although the corresponding profiles of dissociation for the two cases (Fig. 18) show 
very little difference in this region. Because the dissociation temperature is large, 
very small changes in dissociation can cause large changes in the temperature and 
hence the density. 

The dissociation profiles along a streamline, which begins at the point 
x/r = -1.7, y/r = 0.38 and passes around the blunt nose, are compared in Fig. 19 
for the two grids. Very little difference can be seen except that the dissociation falls 

0.6 

0.4 

a 

0.2 

- 43 x 40 GRID 

43 x 20 GRID 

FIG. 18. Near-stagnation line dissociation for two different cell sizes. Freestream conditions are in 
Table III. 
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FIG. 19. Dissociation profiles along streamline as calculated on two different grids. Freestream 
conditions are in Table III. 

slightly more rapidly behind the shock for the coarse grid. This difference can be 
attributed to the pseudo-dissipative effects which are related to the different cell 
sizes in the two calculations. In the steady state the variation of dissociation along 
a streamline is given by 

v dcr/ds = R - d, 

where R is the local reaction rate from Eq. (8) v is the local velocity, and d 
represents the pseudo-dissipation (or error) which in the region behind the shock 
consists primarily of diffusion across the streamlines because of the density gradient 
in that direction. Figure 20 shows how the pseudo-dissipation, normalised with 
respect to the maximum dissociation rate in the flow, that is, 

(R - v dcl/ds)/( dcr/dt ), , 

la&&Jp,- 

:>, 
change 

of 
scale 

-.02 _ 

I I 
1.0 s/r 2.0 

1 43 x 20 GRID 

- 43 x 40 GRIO 

FIG. 20. Pseudo-dissipation along the same streamline as in Fig. 19. Freestream conditions are in 
Table III. 
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TABLE IV 

CPU 
Mach Q Max i (s) 

number Eq. (21b) Grid Ai CFL max IBM3083E 

15 0.218 32 x 25 0.0001 0.039 1.64 11,750 
15 10.9 32 x 25 0.0001 0.039 1.50 10,090 

5.66 10.6 43 x 20 0.006 0.98 3.0 290 
5.66 10.6 43 x 20 0.0006 0.098 3.0 2220 
5.66 10.6 43x40 0.003 0.98 3.0 1030 
5.66 10.6 43 x 40 0.0003 0.098 1.8 4300 

varies along the streamline for each calculation. Behind the shock it is smaller on 
the liner grid and in both cases it is much smaller than it is within the shock. 
Because the local reaction rate is very small behind the shock, the pseudo- 
dissipation in these calculations is of the same order of magnitude as the reaction 
rate there. The absolute error, however, is small and the results in Figs. 14, 15, and 
19 show that this has a negligible effect on these calculations for practical purposes. 
However, this does indicate that EFM would be unsuitable for flows in which very 
slow reactions predominate. 

All the CPU times for the two-dimensional calculations, together with the time- 
step, the maximum CFL number, and the number of cells in the grid, are shown 
in Table IV. These times apply to an IBM 3083E which runs at approximately 1 
MFLOPS. The IBM FORTRAN compiler (version 2.0) with the optimisation 
level 2 was used. In these calculations the CPU time was almost equally divided 
between the calculation of the fluid dynamics and the chemical kinetics. These CPU 
times, in combination with the relative speeds of various computers given in Table 1 
of Ref. [ 171, show that the time required to advance the EFM solution by one time 
step, with the single reaction, is slightly less than the reported times for other solu- 
tion methods for the Euler equations alone (for example Refs. [18-201) which 
makes EFM about twice as fast as those methods at each time step. However, the 
slow approach to steady state in EFM means a larger overall CPU time could be 
needed to obtain an acceptable approximation to the steady state. This may make 
EFM as it stands computationally expensive if steady state solutions only are 
required, although, as mentioned in the Introduction, the robustness of the method 
may be more important than its speed. It should be remembered that EFM is in 
its infancy and methods for reducing the computer time, such as local time stepping 
and adaptive grid techniques [21], could well improve the computational efficiency 
of EFM. 

7. CONCLUSIONS 

Pullin’s equilibrium flux method has been adapted to calculate the flow of a 
chemically reacting gas where the reaction rates are such that the chemical com- 
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position is not necessarily in equilibrium with the local density and temperature of 
the gas. The one-dimensional calculations made with the method show that as the 
cell size is decreased the EFM results approach the solution obtained from an 
accurate numerical integration of the governing equations behind a shock in a 
reacting gas. Calculations of the hypersonic flow of a dissociating gas about a two- 
dimensional blunt body agree well with previously published results despite the use 
of a rather coarse computational grid relative to the characteristic reaction length 
of the flow. The method is robust and has been shown to give results which are vir- 
tually independent of the time step used to advance the solution. Like any method 
which smears discontinuities over a few cells, the results cannot be entirely inde- 
pendent of the grid spacing, yet it has been shown here for a particular case that 
doubling the number of cells had very little effect on the flowtield and negligible 
effect on the integrated body forces predicted. There is nothing in the method which 
limits it to one chemical reaction or the simplified reaction model used here. The 
only constraint is the computing time required. The two-dimensional calculations 
with a single chemical reaction did not require a prohibitive amount of computa- 
tional power. 

The equilibrium flux method is not restricted to any particular flow geometry and 
the core of the method, the calculation of fluxes across cell boundaries, is the same 
in one, two, or three space dimensions. To extend the method to three dimensions 
is, therefore, not a problem of fluid mechanics or physics but only a problem of 
devising an appropriate 3D cell network; although this may not be trivial. Another 
useful feature of the method is that it becomes an upwind method in the hypersonic 
limit. This is important because it is in supersonic and hypersonic flows that the 
flow energy is great enough to initiate chemical reactions in air. The pseudo-dis- 
sipative nature of EFM, which detracts somewhat from the accuracy of the method, 
does, however, appear to make the method robust. The pseudo-dissipation 
produces no unphysical oscillations which could have disastrous effects on sensitive 
chemical reactions. These features of EFM make it a promising candidate for the 
calculation of the fully three-dimensional flow of a reacting gas about a hypersonic 
cruise or re-entry vehicle. 

APPENDIX : DISSIPATIVE EFFECTS 

A finite volume method for the Euler equations, such as Jameson’s [22], is 
derived from the Euler equations in integral form; that is, 

a 
at, 5 WdQ+ s F.ndS=O, 

s (A.1) 

where B denotes a fixed region with boundary S. The outer normal to the bound- 
ary is n, W is the vector of conserved quantities, and F is the corresponding flux 
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tensor. For a one-dimensional flow in a stream tube of constant cross section these 
are 

W= ii], F= [ ,u;;~:,,j~ (A.21 

where p is the pressure. The region ds1 will be an infinitesimal length of the tube 
and may be approximated by a discrete cell of volume Vi. Then the Euler equations 
can be approximated as 

f ViWi+Qi=O, (A.3) 

where Q, is the net flux out of the ith cell in unit time. This is given by 

Qi= CF,+I,~L,JQS 64.4) 

where S denotes the surface area of the two boundaries of the cell and F,, i,* and 
Fi- 112 are the flux terms at these boundaries. The boundary fluxes can be 
approximated by the mean of the fluxes evaluated at the cell centroids either side 
of the boundary. Thus 

Fi+l/~=tCFi+Fi+ll, (A.5) 

where 

Fi = b4.6) 

In practice, a finite difference solution of Eq. (A.3) will be unable to represent 
shocks [23]. By adding an “artificial viscosity” [24] or other [22] dissipative 
terms, D, so that the equation that is solved is 

$ viWi+ (Qi-D;)=O, (A.7) 

the shocks are smeared over a few computational grid points, and a steady solution 
including the “shock” is achieved. 

In EFM ViWi is changed in one time step by an amount 

A( ViWi) = -Q; At, 

where 

Q: = CC+ 1/z - K 1121 .S (‘4.8) 
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is the net flux out of the ith cell in unit time, and F’ is the net flux per unit area 
in unit time across a cell boundary. In other words, EFM provides an approximate 
solution of the equation 

& Viwi+Q(=o. (A.9) 

To compare this with (A.7), put Q’ = Q - D’, where D’ is the equivalent pseudo- 
dissipative terms in EFM. It follows from (A.4) and (A.8) that 

D:=di.S=[dF,+,/,-dF,-,/,]‘S, (A.lO) 

where 

dFi+ I/Z = Fi+ I/Z -F:+ l/2 (A.ll) 

is the difference between the boundary flux of (A.5) and the boundary flux for EFhk 
which can be evaluated from Eqs. (3) in the main text using the conditions in the 
cells on either side of the boundary. After lengthy algebraic manipulation it is found 
that 

where 

F:+,/2=tMiFi+SNi+IFi+,-A,Ci+Ai+,Ci+1, (A.12) 

M;= 1 +2Ai+2Bi 

Ni= 1-2/t-2& 

Ai = exp( -s’)/(2s,rc”2) 

Bi = erf(si)/2 

and 

0 
ci= pi . I I t”i Pi 

It follows from (A.5), (A.ll), and (A.12) that the form of AF for EFM is 

dFi+ 1/2 = {(Ai+, +Bi+,)Fi+,-A,+I Ci+,}- {(Ai+Bi)F,-AiCi}. (A.13) 

The pseudo-dissipation can be found from (A.lO) and (A.13). It is 

di={(Ai+,+Bi+,)Fi+, -A;+lCi+l}-2((A,+Bi)F,-AiCi} 

+{(Ai_l+Bi-,)F;-,-Ai~1C;~1}, (A.14) 
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which is the finite difference approximation to a term of the form 

d=$ [(A+B)F-AC]. 

It is interesting to find the hypersonic limit of (A. 12). For s -+ 00, Ai -+ 0, Bi + t, 
Ni-+O, and Mi+2, so 

limit F:+ 1,2 = Fi. (A.15) 
S’gr 

Thus the scheme reduces to a simple up-wind method in which the boundary flux 
depends only on the conditions on one side of the boundary. 
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